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Extreme Learning Machine With Composite Kernels
for Hyperspectral Image Classification
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Abstract—Due to its simple, fast, and good generalization
ability, extreme learning machine (ELM) has recently drawn
increasing attention in the pattern recognition and machine learn-
ing fields. To investigate the performance of ELM on the hyper-
spectral images (HSIs), this paper proposes two spatial–spectral
composite kernel (CK) ELM classification methods. In the pro-
posed CK framework, the single spatial or spectral kernel consists
of activation–function-based kernel and general Gaussian kernel,
respectively. The proposed methods inherit the advantages of
ELM and have an analytic solution to directly implement the
multiclass classification. Experimental results on three benchmark
hyperspectral datasets demonstrate that the proposed ELM with
CK methods outperform the general ELM, SVM, and SVM with
CK methods.

Index Terms—Composite kernel (CK), extreme learning
machine (ELM), hyperspectral image (HSI) classification.

I. INTRODUCTION

H YPERSPECTRAL data contain rich spectral and spa-
tial information of the materials in a given geographic

scene. In hyperspectral images (HSIs), each pixel consists of
the spectral characteristics across a continuous range of narrow
bands, and each image contains the scene structure informa-
tion. These special characteristics bring wide applications of
HSIs and also pose many processing problems [1], such as
feature extraction and classification. Classification is an impor-
tant task in HSI processing. Based on the fact that different
materials have different reflections at a certain spectral band,
the traditional pixelwise classifiers usually identify and clas-
sify the materials based on their spectral curves (pixels). Due
to the high HSI dimensionality coupled with limited labeled
samples [2], HSI classification usually suffers from the Hughes
phenomenon [3] and becomes a challenging problem [1],
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[2], [4]. To overcome the high-dimensional and small-sample
problem, many machine learning methods, such as support vec-
tor machine (SVM) and other kernel-based methods [5]–[7],
and semi-supervised learning methods [8], were recently intro-
duced for HSI classification and had shown good performance
[5]–[10].

However, these pixelwise classifiers only use the spectral
information without considering the rich spatial information
[2]. In the pixelwise classification, each labeled HSI pixel is a
sampled spectrum and processed independently. In fact, spatial
neighboring pixels have similar spectral characteristics and usu-
ally belong to the same class. The inter-pixel correlations can be
used to improve HSI classification performance [1], [2], [11].
In recent years, many spatial–spectral classification methods
have been proposed [1], [11]–[14], such as the morphologi-
cal transformation-based spatial–spectral classifier [14]–[17],
Markov random fields (MRFs) methods [18], [19], and SVM
with composite kernels (SVM-CKs) [20]–[22]. In SVM-CK,
each pixel is considered as both the spectral and spatial fea-
tures. The spatial feature is usually represented as the mean
or standard deviation of pixels in a spatial neighborhood [20].
By integrating spectral and spatial features in a CK, SVM-CK
is effective and easy to implement [20]. However, the optimal
parameter of SVM-CK is usually difficult to find. Searching
the optimal CK parameters and SVM regularization param-
eter is time-consuming, especially for the high-dimensional
HSI data.

Recently, a fast and effective machine learning method called
the extreme learning machine (ELM) has been proposed [23]–
[26]. As a single hidden layer feedforward neural network
(SLFN) [27], [28], ELM does not need to tune the hidden layer
parameters if the network architecture (number of the hidden
layer nodes) is determined. The hidden layer parameters in
ELM are randomly generated and independent of the training
data and application environments. By minimizing the train-
ing error and the norm of output weights simultaneously, ELM
tends to have better generalization performance and has a uni-
fied analytic solution for the binary, multiclass, and regression
problems [25]. The implementation of ELM is simple because
only (regularized) least squares is involved. In addition, the
general ELM can be extended to kernel learning framework.
Due to these remarkable properties, ELM has been applied to
different fields [25], [26], [29]–[32]. In the field of HSI process-
ing, Pal et al. applied the general ELM and kernel-based ELM
to land cover classification [29], [33], where ELM provides a
slightly better results than the backpropagation neural network
and SVM. However, the computational cost of ELM is much
less than the backpropagation neural network and SVM. Bazi
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et al. used a differential evolution method to select the opti-
mal parameters in the kernel-based ELM for HSI classification
[34]. Samat et al. proposed two ensemble ELM methods based
on Bagging and AdaBoost to improve the stability of ELM
[35]. Heras et al. explored two ELM-based spatial–spectral
classifiers for HSI classification using watershed transform and
spatially regularization methods [36].

In this paper, based on ELM, we perform the joint spatial–
spectral classification of HSIs. The fast computation capability
of ELM can reduce the time for processing the high dimension-
ality and high-resolution HSI data. The good generalization per-
formance of ELM helps to increase both the spectral and spatial
separability and then leads to a superior performance by joint
spatial–spectral classification. We propose two ELM-based CK
spatial–spectral classification methods, namely, ELM with CK
(ELM-CK) and kernel-based ELM with CK (KELM-CK). In
ELM-CK, the single spatial or spectral kernel is represented as
the multiplication of a random hidden layer output matrix and
its transposition. While in KELM-CK, the general Gaussian
radial basis function (RBF) kernel is used. The composite
spatial–spectral kernel is input to the ELM learning frame-
work, resulting in a simple and effective solution for HSI
classification.

The rest of this paper is organized as follows. The ELM
method is introduced in Section II. In Section III, the proposed
ELM with CK methods are described. The experimental results
and analysis are provided in Section IV. Finally, Section V
gives a summary of our work.

II. EXTREME LEARNING MACHINE

A. Single-Hidden Layer Feedforward Neural Networks

Given N training samples {(xi,yi)}Ni=1, where xi =
[xi1, . . . , xid]

T ∈ Rd and yi = [yi1, . . . , yim]T ∈ Rm, the out-
put function of a standard SLFNs with L hidden nodes can be
represented as

fL(x) =

L∑
i=1

βiGi(x) =

L∑
i=1

βiG(ai, bi,x) (1)

where ai = [ai1, . . . , aid]
T is the weight vector connecting the

input nodes to the ith hidden node, βi = [βi1, . . . , βim]T is
the weight vector connecting the ith hidden node to the output
nodes, bi is the threshold of the ith hidden node, and Gi(x) =
G(ai, bi,x) is the hidden layer output function (activation
function) of node i.

The above SLFNs with L hidden nodes and activation func-
tion G can approximate N arbitrary distinct samples [23]:∑N

j=1 ‖fL(xj)− yj‖ = 0, i.e., there exist βi, ai, and bi such
that

L∑
i=1

βiG(ai, bi,xj) = yj , j = 1, . . . , N. (2)

The above N equations can be written as

Hβ = Y (3)

where β = [β1 . . .βL]
T ∈ RL×m and Y = [y1 . . .yN ]T ∈

RN×m, and the hidden layer output matrix

H =

⎡
⎢⎢⎣

G(a1, b1,x1) · · · G(aL, bL,x1)

... · · · ...

G(a1, b1,xN ) · · · G(aL, bL,xN )

⎤
⎥⎥⎦. (4)

The matrix H is a function of hidden layer parameters ai and
bi and is unknown. During the training process, SLFN needs to
simultaneously adjust the parameters ai and bi, βi such that

(âi, b̂i, β̂) = arg min
ai,bi,β

‖H(a1, . . . ,aL; b1, . . . , bL)β −Y‖2.
(5)

Equation (5) is usually solved by gradient-based iterative
techniques, such as back-propagation (BP) algorithm. However,
the BP algorithm usually suffers from several issues such as
slow learning speed, trivial parameter tuning, local minima, and
over-fitting [23].

B. Extreme Learning Machine

ELM is a generalized SLFN [23], [26]. Different from the
traditional SLFNs, ELM does not need to tune the hidden
parameters ai and bi. In ELM, the weight vector ai and thresh-
old bi are randomly generated in the beginning of learning and
remain fixed during the learning process. Once the random val-
ues of ai and bi are assigned, the hidden layer output matrix H
also keeps unchanged in the learning process [23].

Different from traditional gradient-based learning algori-
thms, ELM aims to reach not only the smallest training error
as in (5) but also the smallest norm of output weights [25]

Minimize : ‖Hβ −Y‖2 and ‖β‖2. (6)

According to Bartlett’s neural network generalization theory
[37], for feedforward neural networks reaching smaller training
error, the smaller the norms of weights are, the better gener-
alization performance the networks tend to have. Thus, ELM
tends to have better performance in real applications [25].

Denote h(x) = [G(a1, b1,x), . . . , G(aL, bL,x)], from the
optimization theory point of view, (6) can be reformulated as

min
β

1

2
‖β‖22 + C

1

2

N∑
i=1

ξ2i

s.t. h(xi)β = yT
i − ξTi , i = 1, . . . , N (7)

where ξi is the training error of training sample xi and C is a
regularization parameter.

Based on the Lagrange multiplier method and from the KKT
optimality conditions [25], the solution of (7) can be analyti-
cally expressed as

β = HT

(
I

C
+HHT

)−1

Y. (8)

When β is obtained, the output function of ELM is

f(x) = h(x)β = h(x)HT

(
I

C
+HHT

)−1

Y. (9)
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Similar to SVM, the general ELM in (9) can be general-
ized to kernel version using a kernel trick. In detail, the inner
product operation involved in the computation of h(x)HT and
HHT can be replaced by a kernel function: h(xi) · h(xj) =
K(xi,xj). After the substitution, we can obtain the kernel ELM
(KELM) with the output function

f(x) = Kx

(
I

C
+K

)−1

Y (10)

where the kernel K = [K(xi,xj)]
N
i,j=1 and Kx = [K(x,x1),

. . . ,K(x,xN )]. The characteristic of KELM is that the general
kernel functions used in SVM and other kernel-based methods
can also be used in (10). In the experiment, it only needs to
provide a kernel function and then to tune the related kernel
parameters.

Now, we have obtained two implementations of ELM:
1) general ELM in (9) and 2) KELM in (10). The difference
between ELM and KELM lies in that the output function in (9)
is obtained based on the matrix H, while the output function in
(10) is computed from K. H is the hidden layer output matrix
defined in (4) and is dependent on the network architecture.
However, K is independent on the network architecture and can
be chosen as any kernel function. On the other hand, the output
function f can be considered as a linear expansion over given
basis functions. In this sense, ELM and KELM have differ-
ent basis functions, i.e., h(x) and Kx, and different expansion

coefficients, i.e., β and α =
(

I
C +K

)−1
Y, respectively. In

the implementation of ELM, it needs to solve the coeffi-
cient β defined in (8). While in KELM, it needs to solve the
coefficient α.

In the general ELM, the activation function G(x) in the
feature mapping h(x) can be set as a nonlinear piecewise
continuous function satisfying the ELM universal approx-
imation capability theorems [23], [25], such as Sigmoid
and Gaussian functions. The Sigmoid function G(a, b,x) =
1/(1 + exp(−(a · x) + b)) is used in this paper. The hidden
parameters a and b in the Sigmoid function are randomly gen-
erated from a uniform distribution before seeing the training
data. That is, the hidden parameters a and b in ELM are not
only independent of the training data but also independent of
each other. In addition, we can see from (8) that when the
number of training samples is very small, the size of matrix
HHT is very small, so ELM is very fast. When the num-
ber of training samples is huge, the ELM solution in (8) can
be changed to be [25]: f(x) = h(x)

(
I
C +HTH

)−1
HTY.

In this case, the computation cost of ELM is related to the
number of hidden neurons L, which is usually not larger
than 1000 [25]. Thus, ELM also achieves a low computa-
tional cost. Furthermore, ELM is simple and much effective.
The good generalization performance of ELM lies in its uni-
versal approximation capability [24], [25] and classification
capability [25]. The above advantages of ELM can benefit
the HSI classification. With the randomly generated parame-
ters a and b, ELM can overcome the trivial parameter tuning
and overfitting problem. The low computational cost of ELM
helps to increase the speed of high dimensional HSI data
processing.

III. PROPOSED ELM WITH CKS

According to the spatial homogeneous distribution character-
istics of HSI, a pixel and its spatial neighboring pixels generally
belong to the same material and have the same label. These spa-
tial interpixel correlations can be considered and combined with
the spectral similarity to produce a desired joint spatial–spectral
classifier. By exploiting the complementary discriminant infor-
mation in spatial-domain and spectral-domain, the CK method
is commonly used to perform the spatial–spectral classification.
In the CK method, a local spatial feature extraction method is
firstly used to extract spatial features, then the extracted spatial
features and the original spectral features are used to compute
spatial and spectral kernels, which are combined to form a CK.
Based on the computed CK, the kernel-based methods can be
used to perform the final classification. In this section, we use
ELM to perform the CK-based spatial–spectral classification
of HSIs.

Now, we extract the spectral and spatial characteristics of
HSIs. Given a pixel xi (here, a pixel is a sample consisting of
the spectral characteristics across a continuous range of spec-
tral bands), we denote its spectral and spatial features as xω

i and
xs
i , respectively. The spectral feature vector xω

i is the original
xi, which consists of spectral reflection values across all bands.
The spatial feature vector xs

i is extracted from the local spatial
neighborhood of pixel xi and defined as the mean of pixels in
the spatial neighborhood of xi in this paper.

Once the spatial and spectral features xs
i and xω

i are con-
structed, we can compute the corresponding ELM hidden layer
output matrices Hs and Hω , respectively. As in the general
ELM framework of (9), we can obtain KHs

= HsH
T
s and

KHω
= HωH

T
ω and denote them as the spatial and spectral

activation–function-based kernels, respectively. Using both the
spectral and spatial information, ELM with CK (ELM-CK) can
be represented as

K = μKHs
+ (1− μ)KHω

= μHsH
T
s + (1− μ)HωH

T
ω

(11)

where μ is a combination coefficient balancing the spatial and
spectral information.

For KELM in (10), we can compute the spatial kernel Ks

and spectral kernel Kω as follows:

Ks(xi,xj) = exp

(
−‖xs

i − xs
j‖2

2σ2
s

)
(12)

Kω(xi,xj) = exp

(
−‖xω

i − xω
j ‖2

2σ2
ω

)
(13)

where the RBF kernel is used, and σs and σω are the widths
of the spatial and spectral RBF kernels. KELM with CK
(KELM-CK) is represented as

K = μKs + (1− μ)Kω. (14)

When the composite spatial–spectral kernel in (11) or (14) is
computed, the ELM model resolves a coefficient

α =

(
I

C
+K

)−1

Y (15)
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and outputs

f(x) = Kxα
�
= [f1(x), . . . , fm(x)]. (16)

During the prediction phase, each test sample xt will be
assigned to the index corresponding to the highest value in
f(xt) = [f1(xt), . . . , fm(xt)].

In the proposed methods, we should note the following.
1) ELM-CK inherits the computational advantages of ELM:

simple and fast. It does not need to tune the hidden node
parameters ai and bi in the activation–function-based
kernel KHs

and KHω
. In addition, it is computation-

ally effective and extremely fast because the kernel size
N ×N is small in HSI classification, where only limited
labeled samples are available.

2) KELM-CK has the same CK (14) with SVM-CK.
However, the solving procedure for the coefficient vector
α in KELM-CK is different from that in SVM-CK, espe-
cially for the multiclass classification. SVM implements
the multiclass classification by means of binary classi-
fication according to the one-against-all (OAA) or one-
against-one (OAO) strategy. However, ELM can directly
perform multiclass classification using multioutput nodes
[25]. ELM has a unified solution in (15) for the multiclass
and binary classification problems.

3) For the spatial local neighborhood feature extraction, a
mean feature is used. Because the neighboring pixels
are similar, the mean statistics can measure the cen-
tral tendency and reflect the overall characteristics of
neighboring pixels. For the spectral samples belonging to
different materials (different homogeneous regions), their
spatial neighboring information will be different. The
spatial variability measured by the mean pixel can be con-
sidered as a complementarity of the spectral signature to
improve the discriminant ability. Besides the mean statis-
tics [20], [21], the weighted mean, median [22], standard
deviation [20], nonlinear (weighted) mean statistics [12],
[38], and morphological operators [39], [40] can also be
used to extract the local spatial features.

4) In (11) and (14), the weighted summation CK is used.
Other CKs, such as stacked kernel, direct summation
kernel, and cross-information kernel [20], [40], can also
be used. In ELM-CK in (11), the activation–function-
based kernel is represented as the multiplication of a
random hidden layer output matrix and its transposition,
and the combination of the spatial and spectral activation–
function-based kernels is first used in this paper. In
KELM-CK in (14), the spatial or spectral kernel is rep-
resented as the commonly used RBF kernel due to its
universal approximating property [41] and asymptotic
behaviors for both linear and nonlinear classification [42].

5) Although both methods are spatial–spectral classi-
fiers, the proposed ELM-CK is different from Hares’s
watershed-based ELM algorithm. In the watershed-based
ELM, it first needs to compute a robust color morpho-
logical gradient (RCMG)-based one-band gradient image
from the original multiband HSIs. Then a watershed algo-
rithm is performed on the one-band gradient image to

Fig. 1. Indian Pines dataset. (a) RGB composite image of three bands 50, 27,
and 17. (b) Ground-truth map.

generate a segmentation map. Finally, the segmentation
map and spectral pixelwise ELM map are combined using
a majority voting process. While in ELM-CK, it only
needs to extract local spatial features by computing the
mean of neighboring pixels, and sums the spatial kernel
and spectral kernel for the standard ELM classifica-
tion. So, ELM-CK is much simpler than watershed-based
ELM. In addition, watershed-based ELM needs more
information than ELM-CK, because it needs to process
the whole HSI scenes to obtain a spatial segmentation
map, while ELM-CK only needs the spatial neighborhood
information for each pixel. That is, watershed-based ELM
needs to see the whole HSI data before training, while
ELM-CK only needs spatial neighbors of training pixels.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Datasets

In this section, we investigate the performance of the pro-
posed ELM-CK and KELM-CK on three benchmark hyper-
spectral datasets, i.e., Indian Pines, Univerisy of Pavia, and
Salinas. The three datasets are public available hyperspectral
datasets.1 The Indian Pines dataset is a classic benchmark
to evaluate the performance of HSI classification algorithms
because of the widespread presence of mixed pixels in all avail-
able classes and unbalanced number of labeled pixels per class.
The Univerisy of Pavia and Salinas datasets have very high
spatial resolution and large number of labeled pixels.

1) Indian Pines: The dataset was acquired by the AVIRIS
sensor in 1992. The image scene contains 145× 145 pixels and
220 spectral bands, where 20 channels were discarded because
of the atmospheric affection. The spatial resolution of the data
is 20 m per pixel. There are 16 classes and totally 10 249 labeled
samples in the dataset. The false color composition of bands 50,
27, and 17 and the ground-truth map are shown in Fig. 1.

2) University of Pavia: This dataset was acquired in 2001
by the ROSIS instrument over the city of Pavia, Italy. This
image scene corresponds to the University of Pavia and has
the size of 610× 340 pixels and 115 spectral bands. The spa-
tial resolution is 1.3 m per pixel. After discarding noisy and

1Available online: http://www.ehu.es/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes.
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Fig. 2. University of Pavia dataset. (a) RGB composite image of three bands
60, 30, and 2. (b) Ground-truth map.

Fig. 3. Salinas dataset. (a) RGB composite image of three bands 50, 30, and
20. (b) Ground-truth map.

water absorption bands, 103 bands are retained. The data con-
tain 9 ground-truth classes and 42 776 labeled samples in total.
The false color composition of bands 60, 30, and 2 and the
ground-truth map are shown in Fig. 2.

3) Salinas: The dataset was collected by the AVIRIS sen-
sor over Salinas Valley, California, USA. It contains 512× 217
pixels and 224 spectral bands. After discarding noisy and water
absorption bands, 204 bands are retained. The spatial resolution
of the data is 3.7 m per pixel. The data contain 16 ground-truth
classes and 54 129 labeled samples in total. The false color
composition of bands 50, 30, and 20 and the ground-truth map
are shown in Fig. 3.

B. Competing Methods and Parameter Setting

The proposed ELM with CK methods (ELM-CK and KELM-
CK) are compared with the classical classifiers, such as SVM,
SVM with CK (SVM-CK), general ELM, and kernel-based
ELM (KELM). The classification performance of different
algorithms is assessed on the testing set by the overall accuracy
(OA) which is the number of correctly classified testing samples
divided by the number of total testing samples, by the average
accuracy (AA), which represents the average of the classifica-
tion accuracies for the individual classes, and by the kappa (κ)
coefficient, which measures the degree of classification agree-
ment. All experiments are conducted using MATLAB R2011b

Fig. 4. OA versus neighborhood window width for three datasets. (a) Indian
Pines. (b) University of Pavia. (c) Salinas.

on a computer with 2.93 GHz CPU and 8.0 GB RAM. All data
are normalized to have a unit �2 norm.

In the general ELM method, the sigmoid function is used,
the hidden layer parameters (ai, bi)Li=1 are randomly generated
based on uniform distribution from the range [−1, 1], and the
number of hidden nodes L is set as 1000 as recommended in
[25]. For the CK methods, SVM-CK, ELM-CK, and KELM-
CK, the combination coefficient μ is set to be 0.8. For all
kernel-based algorithms, the Gaussian RBF kernel is used. The
LIBSVM software under a MATLAB environment is used for
the implementation of SVM methods [43]. The RBF kernel
parameter σ and penalty parameter C involved in these meth-
ods are needed to be tuned. The parameter σ varies in the range
{2−4, 2−3, . . . , 24}, and C ranges from 100 to 105. We use a
threefold cross-validation with a grid search method to select
the optimal parameters. In detail, for each parameter pair (C, σ)
(or C for ELM and ELM-CK, or (C, σs, σω) for SVM-CK and
KELM-CK), it performs the following cross-validation opera-
tions: 1) the original training set is randomly divided into three
equally sized subsets; 2) for the three subsets, two subsets are
used to train the model and the remaining subset is used as
the validation data for testing the model and outputting OA;
3) the Step 2) is repeated three times (folds) such that each of
the three subsets are used as the validation data once; and 4) the
three results from the folds are averaged to produce a single
OA. Finally, the parameter pair with the highest OA obtained
by the cross-validation process is set as the optimal parame-
ter pair. The optimal parameter pair corresponds to the highest
empirically cross-validation OA and is used for training and
testing.

C. Investigation on the Effect of Neighborhood Window Size

The neighborhood window size decides the spatial local pixel
neighborhood and hence affects the performance of spatial–
spectral classifiers. Here, we investigate the OA values of
SVM-CK, ELM-CK, and KELM-CK on seven different win-
dow widthes, i.e., 3, 5, 7, 9, 11, 13, and 15. Twenty samples
in each class are selected as the training set, and the remaining
samples are set as testing samples. Fig. 4 shows the changes in
OA as a function of the window width for three datasets.

From Fig. 4, for the Indian Pines dataset, we can see that the
best OAs are roughly achieved at the window width 9 for SVM-
CK, ELM-CK, and KELM-CK algorithms. When the window
width is smaller than 7, the three methods show bad results
because the neighborhood information is insufficient to reflect
spatial variability. When the window width is larger than 9,
OAs are relatively stable, mainly due to the presence of large
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homogeneous classes as shown in Fig. 1(b). For the University
of Pavia dataset, SVM-CK provides stable results when the
window width is no less than 7, while ELM-CK and KELM-
CK achieve relatively stable results with the need of the window
width 11 at least. For the Salinas dataset, it needs the neighbor-
hood window width at least 9 for three algorithms to obtain
good results. In general, the large window benefits HSI clas-
sification for the proposed algorithms mainly due to the large
homogeneous region distribution of HSIs. For consistency, we
set the spatial neighborhood window width as 9 for the three
datasets in the following experiments.

It can also be seen from Fig. 4 that ELM-CK provides bad
results in the case of small windows for the Indian Pines and
University of Pavia datasets, while KELM-CK shows consis-
tent good results in the cases of seven different windows. This
may be because the kernel function in KELM is more discrim-
inant than the activation function in ELM especially when the
spatial information is insufficient in the case of small windows.
Compared with SVM-CK, KELM-CK shows consistent better
results in the cases of different windows and different datasets.
This verifies the good generalization performance of the ELM
solution.

D. Investigation on the Computation Cost

In this section, we investigate the computation time of the
proposed methods. Fig. 5 shows the searching time, testing
time, and training time of the spatial–spectral SVM-CK, ELM-
CK, and KELM-CK in the cases of different numbers of labeled
samples per class ranging from 5 to 40 and different datasets.
The searching time refers to the time used for the parame-
ter selection. For SVM-CK and KELM-CK, there are three
parameters: 1) the penalty parameter C, 2) spatial RBF kernel
parameter, and 3) spectral RBF kernel parameter. In ELM-CK,
only the penalty parameter C needs to be tuned.

It is noticeable from Fig. 5 that the searching (or training,
testing) time curves are similar on three datasets. ELM-CK
and KELM-CK are much faster than SVM-CK in the process
of parameters searching. In the steps of training and testing,
KELM-CK is slightly faster than SVM-CK, ELM-CK is the
slowest because the computation of H and HHT in ELM-CK
is slower than the computation of K in SVM-CK and KELM-
CK. In the whole process, the searching time is dominant, and
the total time costs of ELM-CK and KELM-CK are much less
than that of SVM-CK.

E. Comparison Results

The Indian Pines dataset has an unbalanced number of
labeled pixels per class, where the total number of samples
ranges from 20 to 2455 in each class. Due to the unbalanced
data distribution, the classification of Indian Pines dataset is a
challenging problem. To investigate the performance of differ-
ent algorithms in this challenging case, we randomly choose 5%
of the labeled samples per class for training (for the class with
extremely limited training samples, at a minimum three samples
are chosen as training samples, resulting 518 training samples
totally). The remaining labeled samples are used for testing. In
this case, the ratio of the labeled samples to the total samples

Fig. 5. Searching (left), testing (middle), and training time (right) of SVM-
CK, ELM-CK, and KELM-CK for three datasets. (a)–(c) Indian Pines.
(d)–(f) University of Pavia. (g)–(i) Salinas.

TABLE I
CLASSIFICATION ACCURACIES (%) WITH 5% LABELED SAMPLES PER

CLASS FOR THE INDIAN PINES DATASET

in each class is balanced. The proposed ELM-CK and KELM-
CK are compared with SVM, SVM-CK, ELM, and KELM. The
classification performance is measured by the class accuracy
(CA), OA, AA, and kappa coefficient (κ) on the testing set. The
mean and standard derivation of the classification results over
10 randomly runs are recorded in Table I, where the number of
training and testing samples for each class are also included.

From Table I, we can see that, among the spectral classifiers,
KELM shows slightly better results than SVM, and ELM pro-
vides the worst results especially for the classes with extremely
limited training samples. This demonstrates the kernel used
in KELM or SVM is more powerful than the randomly gen-
erated activation function used in ELM in the case of small
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TABLE II
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF

LABELED SAMPLES PER CLASS FOR THE INDIAN PINES DATASET

samples. When additional spatial information is available, the
performance of the spectral-based classifiers is dramatically
improved. This can be clearly seen from the class accuracies of
Classes 1, 7 and 9. For these three classes with only 3 train-
ing samples in each class, the spectral classifiers obtain bad
results because the spectral similarity provided by the limited
training samples is insufficient to represent the whole materials.
However, when the spatial neighborhood information is taken
into account, the class accuracies are dramatically improved,
29.3% versus 81.6% for Class 1, 71.6% versus 96.8% for Class
7, and 52.9% versus 98.8% for Class 9 for comparing KELM
and KELM-CK. The reason is that spatial information helps to
discriminant the samples with similar spectral curves based on
the principle: samples from the same class have similar spectral
curves as well as similar spatial neighborhood structures while
samples from different classes usually have different spatial
neighborhood structures even if they are spectrally similar. This
conclusion can also be verified on Classes 2, 3, 4, and Classes
10, 11, 12, respectively. Classes 2, 3, 4 are three subclasses of
corns, i.e., “Corn-notill”, “Corn-mintill”, and “Corn”. Classes
10, 11, 12 are three subclasses of soybeans, i.e., “Soybean-
notill”, “Soybean-mintill” and “Soybean-clean”. These classes
have much similar spectral responses so they are difficult to
be separated by spectral-based classifiers. However, the spatial-
spectral information helps to identify subtle critical differences,
and KELM-CK achieves a good classification accuracies, i.e,
more than 92% on three classes of corn, and more than 90% on
three class of soybeans.

TABLE III
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF

LABELED SAMPLES PER CLASS FOR THE UNIVERSITY OF PAVIA DATASET

TABLE IV
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT NUMBERS OF

LABELED SAMPLES PER CLASS FOR THE SALINAS DATASET
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Fig. 6. Classification maps for the Indian Pines dataset with 40 labeled samples per class. (a) SVM (OA = 70.1%). (b) ELM (OA = 64.5%). (c) KELM
(OA = 71.9%). (d) SVM-CK (OA = 89.1%). (e) ELM-CK (OA = 92.5%). (f) KELM-CK (OA = 93.4%).

Fig. 7. Classification maps for the University of Pavia dataset with 40 labeled samples per class. (a) SVM (OA = 78.5%). (b) ELM (OA = 66.0%). (c) KELM
(OA = 77.9%). (d) SVM-CK (OA = 91.4%). (e) ELM-CK (OA = 91.0%). (f) KELM-CK (OA = 93.5%).

We can also see from Table I that the proposed ELM-CK and
KELM-CK methods show similar performance and outperform
other classifiers consistently. Compared with SVM-CK, ELM-
CK and KELM-CK increase OA by about 3%. Even for the
difficult-to-separate classes of corns and soybeans, KELM-CK
improves SVM-CK by more than 4% in CA. Although ELM
methods don’t show significant improvements over SVM on
the spectral data, their counterparts on the joint spatial-spectral
data have overwhelming advantages over SVM-CK. It demon-
strates that ELM is more powerful to exploit the rich spatial
information.

In the following, we further investigate the performance
of the proposed methods under different numbers of labeled
samples per class. We randomly choose M = 5, 10, 15, 20, 25,
30, 35, 40 samples from each class to form the training set,
respectively (For the class less than M samples, half of total
samples are chosen). The remaining samples form the testing
set. The OA, AA, and κ values of the classification methods
under different numbers of labeled samples per class for three
datasets are shown in Tables II–IV, respectively. As shown in
the tables, with the increase of training samples, the OA, AA
and κ values for all algorithms are greatly improved. For the
spectral classifiers, KELM provides better results than SVM for
the Indian Pines and Salinas datasets especially in the case of
extremely limited training samples, and slightly worse results
than SVM on the University of Pavia dataset. ELM shows rel-
atively bad results on three datasets. In all of the experiments,
the spatial-spectral methods provide more accurate results than
the spectral methods. It demonstrates that spatial information is
necessary to complement the spectral features for identifying
the subtle differences of similar objects. Among the spatial-
spectral methods, the proposed ELM-CK and KELM-CK show
a significant improvement over SVM-CK. It indicates that

ELM-based methods are more powerful to exploit the rich
spatial information than SVM. When the number of labeled
samples per class is 5, the ELM-based CK methods improve
OA of SVM-CK up to 7.8%, 6.8%, 9.1% on the Indian Pines,
University of Pavia and Salinas datasets, respectively. This
shows that ELM-based methods are more stable than SVM in
the case of small-sized-sample.

The classification maps of different methods under 40 train-
ing samples per class for three datasets are shown in Figs. 6–8,
respectively. We take the classification maps of the Indian Pines
dataset as an example to visually observe the classification per-
formance of different algorithms. It can be clearly seen that
the classification maps of ELM-CK and KELM-CK are more
spatially coherent in the large homogeneous regions than other
methods. In addition, the spatial-spectral methods provide bet-
ter results than spectral methods in terms of consistent classifi-
cation results with little noise. In particular, the improvement is
typically arisen for classes with similar spectral signatures. This
can be seen from Fig. 6(a), where the pixels in the circled region
belonging to the “Corn-mintill” class are wrongly classified to
the nearby and similar class “Corn-notill” by the spectral-based
SVM, while they are correctly classified by all three spatial-
spectral classifiers. As we have mentioned before, the joint
spatial-spectral information helps to identify subtle critical dif-
ferences of spectrally similar materials. However, by implicitly
assuming that the spatial neighboring pixels are similar, the
spatial-spectral classifiers make mistakes on the boundary test
pixels. This can be seen from Fig. 6(f), the pixels in the circled
region belonging the class “Soybean-notill” (luminous yellow)
are wrongly classified to the nearby class “Soybean-mintill”
(ochre yellow), while the pixels in the squared region belonging
the class “Soybean-mintill” are wrongly classified to the nearby
class “Soybean-notill”. Because a large window with width 9
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Fig. 8. Classification maps for the Salinas dataset with 40 labeled samples per class. (a) SVM (OA = 89.3%). (b) ELM (OA = 88.6%). (c) KELM (OA = 89.2%).
(d) SVM-CK (OA = 93.9%). (e) ELM-CK (OA = 95.0%). (f) KELM-CK (OA = 96.4%).

is used for the spatial-spectral classifiers, the spatial neighbor-
hood of a boundary test pixel may contain the pixels from other
materials or backgrounds. Therefore, for a boundary test pixel,
the local spatial feature extracted from the spatial neighbor-
hood can not faithfully reflect its real spatial structure. If, in
the spatial neighborhood of a boundary pixel, the pixels from
another materials are dominant, then the spatial-spectral clas-
sifiers will make a wrong classification for the boundary pixel.
If a small window is used, the boundary effect can be reduced.
However, the classification performance in the large homoge-
neous regions will be decreased because the spatial information
is insufficient to discriminant spectrally similar pixels.

V. CONCLUSION

In this paper, we have proposed a new ELM with the
CK framework for HSI classification. In particular, ELM is
performed on the joint spatial–spectral data using a linear com-
bination of the spatial and spectral activation–function-based
kernels or general Gaussian kernels. Experimental results have
shown that the proposed ELM-CK and KELM-CK are more
accurate and much faster than the benchmark SVM-CK for the
spatial–spectral classification of HSIs.
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